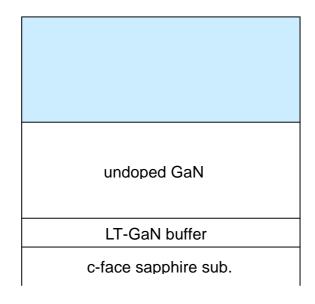
Low p-type contact resistance using Mg-doped InGaN and InGaN/GaN superlattices

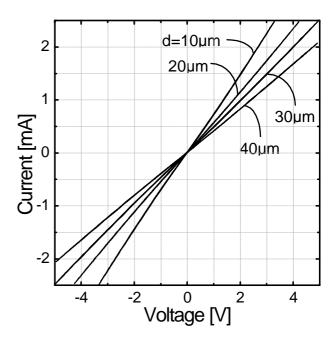
* Kazuhide Kumakura, Toshiki Makimoto and Naoki Kobayashi

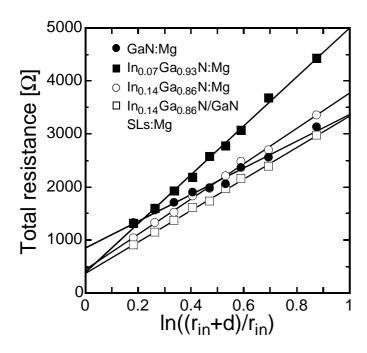
NTT Basic Research Laboratories,

3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan

Recent significant progress in growth of group-III nitride-based semiconductors by metalorganic vapor phase epitaxy has made it possible to realize InGaN-based light emitting diodes and laser diodes. However, it is difficult to grow p-type GaN with high hole concentration due to relatively deep acceptor level and there are no appropriate metals having large work functions, resulting in high p-type contact resistances. To further improve the device performances, one of the important problems is to obtain the low-resistance ohmic contacts to p-type materials. To date, the metallization schemes and surface treatments strongly affected the contact resistances, 10 resulting in the order or less than $10^{-4} \ \Omega \text{cm}^2$. From the viewpoints of high hole concentration layers, p-type AlGaN/GaN superlattices (SLs) were used to obtain low contact resistance. 20 Recently, we realized p-type InGaN with hole concentrations above $10^{18} \ \text{cm}^{-3}$ and p-type InGaN/GaN SLs with those above $10^{19} \ \text{cm}^{-3}$. 3,49 In the GaAs system, a heavily doped narrow band-gap InGaAs has been widely used as a cap layers, because InGaAs has a narrower band-gap energy (Eg) than GaAs, and an InGaAs cap layer reduces both the contact potential barrier and the contact resistance. Therefore, InGaN having narrower band-gap than GaN is expected to be used as the low-resistive contact layers of group-III nitride-based semiconductors. So far, for n-type contacts, InN/GaN short-period SLs have been demonstrated for the cap layers. 50 In this work, we investigated p-type InGaN and InGaN/GaN SLs as p-type ohmic contact layers.


We first grew a GaN buffer layer deposited at 500°C and a 1- μ m-thick undoped GaN at 1000°C on c-face sapphire substrates. Then, we grew Mg doped GaN at 1000°C or Mg-doped In_{0.14}Ga_{0.86}N or In_{0.14}Ga_{0.86}N/GaN SLs at 780°C. The sample structure of Mg-doped InGaN and SLs is schematically shown in Fig. 1. The source materials were triethylgallium, trimethylindium and NH₃ with N₂ as a carrier gas for the InGaN growth. The p-type dopant source was bis-cyclopentadienylmagnesium. All the samples were annealed at 700°C in N₂ ambience after the growth. Ni/Au (20 nm/20 nm) metal was deposited using electron beam evaporation system. The hole concentrations of the Mg-doped GaN, In_{0.07}Ga_{0.93}N, In_{0.14}Ga_{0.86}N and In_{0.14}Ga_{0.86}N/GaN SLs were 6.9×10^{17} , 2.7×10^{18} , 6.7×10^{18} and 2.1×10^{19} cm⁻³, respectively.


The specific contact resistances(ρ_c) were characterized by current-voltage (I-V) measurements based on the circular transmission line model (CTLM). The CTLM pattern was designed with a constant inner radius (r_{in} =50 µm) and spacings (d) from 10 to 70 µm. Figure 2 shows the typical CTLM I-V characteristics of the Mg-doped GaN. Linear I-V characteristics indicated that the good ohmic contacts were achieved in our process. Figure 3 shows the total resistance (R) as a function of $ln((r_{in}+d)/r_{in})$. The data of R were determined by the CTLM I-V characteristics as shown in Fig. 2. Since the I-V curves of all samples showed linear behavior, we could determine ρ_c from the data in Fig. 2. Table I shows ρ_c of the Mg-doped GaN, $ln_xGa_{1-x}N$ ($ln_xGa_{1-x}N$) ($ln_xGa_{1-x}N$) and $ln_{0.14}Ga_{0.86}N/GaN$ SLs. While $ln_xGa_{0.86}N/GaN$ SLs. While $ln_xGa_{0.86}N/GaN$ system are ascribed to narrower $ln_xGa_{0.86}N/GaN$ and higher acceptor concentrations in InGaN $ln_xGa_{0.86}N/GaN$ SLs.


These results indicate that the Mg-doped InGaN system is promising for lowering the p-type contact resistance. Further optimization of metallization schemes and surface treatment will improve ohmic contact characteristics, resulting in high device performance and reliability.

^{*} e-mail: kumakura@will.brl.ntt.co.jp

- 1) for example, H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike and M. Murakami, J. Appl. Phys., **81** (1997) 1315.
- 2) L. Zhou, A. T. Ping, F. Khan, A. Osinsky and I. Adesida, Electron. Lett. 36 (2000) 91.
- 3) K.Kumakura, T. Makimoto and N. Kobayashi, Jpn. J. Appl. Phys. 39 (2000) L195.
- 4) K. Kumakura, T. Makimoto and N. Kobayashi, Jpn. J. Appl. Phys. 39 (2000) L337.
- 5) M. E. Lin, F. Y. Huang and H. Morkoç, Appl. Phys. Lett. **64** (1994) 2557.

Mg-doped samples	Specific contact resistance [Ω cm ²]
GaN	1.1×10^{-2}
$In_{0.07}Ga_{0.93}N$	1.4×10^{-3}
$In_{0.14}Ga_{0.86}N$	2.3×10^{-3}
$In_{0.14}Ga_{0.86}N/GaN\ SLs$	1.9×10^{-3}